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Abstract—Ceriteria are presented for predicting the relative importance of the inertia of the liquid and heat
transfer in the liquid as controlling effects for spherically symmetric vapor bubble growth in liquids. The
coupled governing equations including both of the above effects are first cast in appropriate dimensionless
forms. Then numerical solutions of the coupled equations are compared to the limiting solutions for solely
liquid inertia and solely heat transfer controlled growth processes, in order to determine the respective
regions of importance of these two mechanisms. The cases of growth initiated by a step decrease and a linear
decrease in system pressure are both considered. The criteria are developed for the case of an idealized
fluid having a constant vapor density and a linear vapor pressure curve, and then shown to be approxi-
mately independent of the vapor density and pressure relations of the particular fluid. The applicability
and usefulness of the criteria are supported and illustrated by comparison of predictions based on them
with previous theoretical and experimental results taken from the literature.

NOMENCLATURE
specific heat of liquid ;
enthalpy of vaporization;
Jakob number defined
p CpAT/pv(T.;)hfg;
thermal conductivity of liquid ;
dimensionaless group used in
equivalent to 4(R,/R,)?;
vapor pressure;
instantaneous system pressure ;
final system pressure;
pressure  difference
[pv(Too) - poo.f];
bubble radius;
initial bubble radius;
bubble interface
(R — Ro);
characteristic length for normaliza-

as

[73;

defined as

displacement,

t Currently with College of Engineering, Baghdad Uni-
versity, Baghdad, Iraq.
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tion of bubble radius defined by
Ja® k(p/Ap)*;

dimensionless bubble radius defined
as R/3n(,/3)R,;

dimensionless initial bubble radius
defined as Ry/37(,/3)R,;
dimensionless bubble interface dis-
placement defined as R,/3n(,/3)R,;
transformation variable defined as
R*3;

bubble interface temperature ;
saturation temperature correspond-
ing to final system pressure;

liquid temperature at large distance
from bubble;

superheat temperature difference de-
fined as (T, — T,);

time ;

time at which heat-transfer effects
become dominant;;

system pressure release time;
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b characteristic time for normalization
of bubble growth time defined by
Ja? k(p/Ap);

t*, dimensionless time defined as t/3nt,,;

¥, dimensionless system pressure release
time defined as t,/3nt,;

u, transformation variable defined prior

to equation (8).

Greek symbols
B, dimensionless group used in [7];
f = 0 corresponds to assumption of
thermodynamic equilibrium at bub-
ble interface ;

&y vapor pressure ratio defined as
Po/PAT);

&, o, initial vapor pressure ratio defined as
P TN pAT;

K, thermal diffusivity ;

My dimensionless pressure ratio defined

dimensionless pressure ratio defined

as [pv(Too) - Poo(t)]/AP,

o, density of liquid ;

Do density of vapor;

0, dimensionless temperature ratio de-
fined as (T, — T,)/AT.

INTRODUCTION
A VAPOR bubble initially at equilibrium with its
surrounding liquid will grow if the liquid
pressure is decreased or if the temperature is in-
creased. At early times the growth rate is con-
trolled by the inertia of the liquid mass subject to
the difference in pressure between the bubble
interface and points in the liquid at a large
distance from the interface. However, as the bub-
ble grows, evaporation at the interface causes the
temperature there to drop. The vapor pressure at
the interface drops correspondingly until it
reaches a value essentially equal to the liquid
system pressure. The asymptotic growth is then
controlled by the rate at which heat transfer from
the liquid to the interface occurs in order to sup-
ply the necessary enthalpy of vaporization. For
intermediate times, both liquid inertia and heat-

transfer effects are significant in controlling the
growth rate. Work on this coupled problem was
first reported by Forster and Zuber [1] and by
Plesset and Zwick [2]. They showed that for
vapor bubbles growing from an equilibrium
state in slightly superheated water at a pressure
level of one atmosphere, the heat-transfer mecha-
nism becomes controlling at such short times
that liquid inertia effects may be entirely neg-
lected. Earlier, Plesset [3] had shown that
experimental radius-time curves for cavitation
bubbles in water at subatmospheric pressure
levels could be matched by considering only
liquid inertia effects. In a subsequent review
paper, Plesset [4] pointed out that liquid inertia
effects become more significant as the pressure
level is decreased. He noted that this was because
the vapor density and the slope of the vapor
pressure curve both decrease with the pressure
level.

Since the early investigations mentioned
above, the subject of vapor bubble growth has
received much attention, most of it arising from
interest in flashing, cavitation, and nucleate
boiling phenomena. In spite of this, there does
not appear to be available any practically usable
criteria by which an investigator can obtain a
good estimate of which growth controlling
effects are important under his particular condi-
tions. In addition to liquid inertia and heat
transfer effects, other effects on the growth rate
are surface tension, normal viscous stress at the
bubble interface, and possible nonequilibrium
effects at the interface. These effects have been
included in analyses presented in several recent
publications [6-8]. These papers present results
for certain special cases involving particular
fluids. While effects such as nonequilibrium
may be important under some extreme condi-
tions, it remains true that for macroscopic
bubble growth under most conditions liquid
inertia and/or heat-transfer effects are the domi-
nant mechanisms. In order to put the relative
importance of these effects on a more generalized
quantitative basis, a theoretical investigation
was performed using a single bubble model in an
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infinite body of superheated liquid with spheri-
cally symmetric phase growth. The coupled
governing equations in appropriate dimension-
less forms including both liquid inertia and heat-
transfer effects were solved by numerical tech-
niques resulting in radius-time curves. These
solutions were compared to the solutions for the
two limiting cases for purely heat transfer and
purely liquid inertia controlled processes. In
this way the respective regions where liquid
inertia, heat transfer, or both effects control
the growth rate were mapped out in terms of
dimensionless quantities.

1t is the purpose of this paper to report these
results and to illustrate their validity and
application. The latter is done by comparing
experimental and theoretical results selected
from the literature with the generalized results
obtained here.

FORMULATION OF THE PROBLEM

The equation of motion for spherically sym-
metric bubble growth in an incompressible
liquid is the Rayleigh equation,

3 2 1 .
Here the effects of surface tension and normal
viscous stresses at the interface are neglected,
and the condition p, < p must be satisfied.

We use two approximate solutions for the
temperature at the bubble interface. One is a
result due to Murdock [9] as reported by
Bornhorst and Hatsopoulos [7],

)% 3_R3 4
T. - T = (K/Z)kpvhfa [(R RRO)R] D)

obtained using an integral technique. The other
is the well-known Plesset-Zwick solution [2]
which may be written as

d

v —=(p,R?

3 v

T = %@@ STdE———dz. (3)
3 1] RO}y

1 The dots denote time derivatives.

T, —
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Both of these results are based on the assumption
of a thin thermal boundary layer in the liquid
adjacent to the bubble wall and constant liquid
properties. Also, equation (2) involves the as-
sumption that p, is constant, while for equation
(3) it is necessary only to assume that p, is
uniform. Equation (1) is coupled with equation
(2) or equation (3) by the equilibrium vapor
pressure and vapor density relations p, = p, (T)
and p, =p, (T) assumed to be valid at the
bubble interface. Initial conditions are R = R,
and R = 0 at t = 0. This completes the problem
specification in dimensional form.

Normalization of the equations requires the
selection of an appropriate characteristic length
and time. One might select R, for the character-
istic length, but this is not particularly appropri-
ate for the case of bubble growth as it would be
for collapse, since the asymptotic growth is
independent of R, There is also no obvious
characteristic time. However, normalization of
the equations with respect to an arbitrary length
and an arbitrary time, followed by inspection
of the equations shows that selection of R, and
t, as defined in the nomenclature is appropriate.
With these, equations (1) and (2) become

RO+ 3R = An, —n] @

on\*| (R*3 — R*¥3) R¥]*
9i=<7”> [—( R*” ] (5)

These equations are coupled by

and

nu = 7[,) (91) and 8v = Sv (9;')9 (6)
with initial conditions
R* = R* R* =0att* = 0. (7

Normalization of equations (1) and (3) fol-
lowed by transformationt according to

t#
s = R**and u = | R*(y)dy,
0

1This transformation was originally used by Plesset and
Zwick [2].
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leads to
s+ %5 = = [n, — 7] (®)F
and
(e,8)
0 = | ——d 9
= |2y o
b
with initial conditions
s=R¥ s =0atu=0. (10)

In summary, the equations to be solved are
(4){7) when using Murdock’s equation for the
interface temperature and (8), (9), (6) and (10)
when using the Plesset-Zwick equation for the
interface temperature. We note that once
n,(0,), ¢,0,), and the system pressure variation
n, are specified, these two sets of equations
involve only one parameter, namely R§.

For the sake of completeness, solutions for the
limiting cases where either heat transfer or
liquid inertia controls the entire bubble growth
process are first outlined. For these cases the
results in normalized form do not require the
specification of a particular fluid. Next, the
numerical solutions for the coupled case are
examined. This requires selection of a particular
fluid in order to specify ,(0,) and &,(0;). We select
two fluids: (i) an idealized fluid having a constant
vapor density and a linear vapor pressure curve,
and (ii) water. Results were obtained for two
types of system pressure variation: (i) a step
decrease, n, = 1, for t* > 0, and (ii) a linear
decrease to a constant final value,

T, = t¥/tF, 0 < t* <t¥

(11)

T

1, >t *
SOLUTIONS FOR LIMITING CASES
Liquid inertia controls
Here the vapor pressure is assumed to remain
constant at its initial value, thus n, =0 in
equation (4). For a step decrease in system

+The primes denote derivatives with respect to .
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pressure the solution to equation (4) is the well
known Rayleigh solution. Graphical representa-
tions appear in Figs. 1, 5 and 6.

For a linear decrease in system pressure to a
constant value, analytical solutions to equation
(4) with n, = 0, are not available. Numerical
solutions have been obtained as part of this
study. A graphical representation appears in
Fig. 4.

Heat transfer controls

Neglecting the terms on the left hand side
of equation (4) which represent liquid inertia
effects leads to =,(8,) = n; i.e. the vapor pres-
sure assumes a value always equal to the system
pressure. Thus, for the step decrease in system
pressure, the vapor pressure and hence the
saturation temperature at the bubble interface
remains constant during the growth, ie. 8, = 1.
Also, the vapor density remains constant, ¢, = 1.
The solution to equation (5), the Murdock

equation, is then
277R¥? [1 [ R*\? *
_ 2TnRs R L 2(R —J.
R} 3 \R* |

t* =
to equation (9), the Plesset-Zwick

4 3 (12)

The solution
equation, is

9n?R¥2[ 1 (R*>2 2 (R;;) .
= B&/) T3\
As pointed out by Bornhorst and Hatsopoulus
[7] these results, though based on different
approximate techniques, give bubble radii dif-
fering by only about 2 per cent. Both approxi-
mations do, however, involve the thin thermal
boundary layer assumption.

In examining the heat transfer limiting case
for a linear decrease in system pressure to a
constant value it is necessary to specify the vapor
pressure relation. Assuming a linear vapor
pressure relation, 7, = 6, the temperature vari-
ation at the bubble interface will be linear for
0 < r* < t* and constant for t* > t¥*. The solu-
tion to equation (5) then becomes

_ 81mt*RY’

4 |

t*

(13)

t*
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1 /R"\* 2 /R§ 13 " N
['3—(1(_3) +§(E;>—~1] O <t* <t}

2 27nR%
F=3t

1/R*\? 2 R} « "
[5(@) +§<E;>‘~l],t > tr

SOLUTIONS TO THE COUPLED EQUATIONS--
IDEALIZED FLUID

The idealized fluid is taken to be one for
which 7, =6, and ¢, =1 Results are first
presented for the step decrease and then for the
linear decrease in system pressure.

(14)

Step decrease in system pressure

Equation (4) with n, = 1 can be combined
with equation (5) to give a single nonlinear
ordinary differential equation with initial condi-
tions given by equation (7). The only parameter
is now R¥. This equation was integrated numeri-
cally by a fourth-order Runge-Kutta technique,
for values of R} =4, 2, 1, 0’1, 001 and 0-001.
A solution for one of these cases is displayed

10 T T T
Liquid inertig
Heat transfer,
0'3[' equation{12) 1
Numerical solution _J
o8 equotions {4)and {5)
*u
o
o4k .
R5=0-001
Q2 —1
L H L 1 X L L
(¢ [Re] 20 30 40 50 &0 70 80

#
FiG. 1. Comparison between limiting and coupled solutions
for idealized fluid with step pressure change.

graphically in Fig. 1. The plot is for the dimen-
sionless bubble interface  displacement

¥ = R* — R} vs. t* For comparison the solu-
tions for the corresponding limiting cases are
displayed on the same plot. As would be ex-
pected, the solution for the early growth coin-
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cides with the limiting case for a liquid inertia
controlled process, while the asymptotic growth
eventually coincides with the solution for a heat
transfer controlled process. The numerical solu-
tion was in agreement with equation (12) at
times larger than those shown on the plot. For
intermediate times the coupled solution clearly
deviates from both limiting cases.

In order to delineate those ranges of R} and
t* over which a particular mechanism domi-
nates, the following procedure was adopted. By
comparing the numerical solutions for the
coupled equations to the liquid inertia solution,
values of R} and r* were selected at the point
where R* based on the liquid inertia solution
deviates by 10 per cent from the value of R*
based on the coupled solution. Values were also
chosen where the coupled solution for R¥*
comes to within 10 per cent of the value for the
heat transfer solution. The selected values for
R} and t* are plotted vs. R, (the only parameter)
in Figs. 2 and 3 respectively. If one assumes that
for the growth to be considered significant the
radius must at least double, then the only
region of interest on Fig. 2 is to the right of the

-0 v ¥ T T T
107 —
*o
L3
1072 -
R ]
F k¢ ]
Liquid Intermediote Heat transfer
inertia
- i i | i i
1072
1073 1072 o 10 0!
R

Fig. 2. Classification of growth controlling mechanism
according to R} as a function of R§.

line marked Ry = Ry In this region the dis-
criminating values of R} are essentially in-
dependent of R§. From Fig. 2 one may conclude
that for R} > 03 all significant growth is a
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heat transfer controlled process. For R§ < 03,
a classification in terms of R} must be made; i.c.
for R}¥ <0013 liquid inertia controls,
for R, > 066 heat transfer controls, and
0013 < R¥ < 066 is an intermediate region
where both effects are significant.

L. W. FLORSCHUETZ and A. S. AL-JUBOURI

parison to the limiting cases results in essentially
the same criteria as is summarized in Table 1.

Linear decrease in system pressure

Here equations (4) and (5) were solved numeri-
cally with n_, given by equation (11) and the
initial conditions given by equation (7). Now,
in addition to R} the pressure release time t*

-0 T T T
3 1 is also a parameter. Since here the parametric
_____ =03 ] effect of t¥ is of major interest, solutions were
1otk 4 Table 1. Summary of approximate criteria for growth con-
E 3 trolling mechanism—-step pressure decrease
- 3] —
© 2
£ Liquid inertia  Intermediate Heat
102k 8 controls transfer
Liquid inertia Intermediate T 3 controls
Ry/R, > 5 - - Beforeradius
doubles
IO"_3 | mlz i .1_2 | L A ‘
1o 0 10 o 10 Ry/R, <02 02 < Ry/R, <10 Ry R, > 10
’ Ro/R, <5

Fic. 3. Classification of growth controlling mechanism
according to t* as a function of R§.

Turning to Fig. 3, and looking only at the
region for R} < 03, the process may be said to
be heat transfer controlled for t* > 3-6. The
discriminating value of t* for liquid inertia
control does vary somewhat with R¥, but if one
selects, say, t* < 003 liquid inertia control is
assured. These results are summarized in Table
1. However, the summary has been put in terms
of the dimensionless quantities Ry/R, Ry4R,
and t/t, which differ only by constant factors
from R§, R}, and t* respectively.

Numerical solutions to the coupled equations
(8) and (9), which involve the Plesset-Zwick
approximation for the interface temperature,
were also obtained for the idealized fluid case
for values of R} ranging from 005 to 4. These
results, when compared to those using the
Murdock approximation, agree for the early
growth, deviate slightly for the intermediate
growth, and eventually draw to within 2 per cent
of each other for the asymptotic growth. The
important point here is that the use of the solu-
tions based on equations (8) and (9) for com-

Ht, <03 03 <, <30

t/t, > 30

obtained for six values of t¥ ranging from 002
to 20, with R¥ = 0-001. The result for t* = 4
is displayed in Fig. 4 and compared to the
solutions for the corresponding limiting cases.
The results for ¥ < 003 were essentially identi-
cal to those for the step change case, t} = 0.
For large values of t¥, the intermediate region
starts to shrink and for ¢* > 4 the heat-transfer

K] T T T T T T T
Liquid inertia,
numericol solution~
equation (4 Heat tronsfer,
o8 equation (14}
o.G» -
N Numerical solution,
coupled equations
o4} (4)and (5) 4
#2880
ozl #o=0
i . L 1 L

L

o] K9 20 3-\0 40 50 60 70 80
pe

F16. 4. Comparison between limiting and coupled solutions

for idealized fluid with linear pressure variation to constant

value at t¥.
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limiting solution remains within 10 per cent
of the coupled solution for the entire growth. For
003 < t* < 4 the step change criteria can be
used as a guide, but it should be kept in mind
that the liquid inertia and intermediate regions
will become less important as ¢ increases. The
suggested criteria for the linear system pressure
change are summarized in Table 2, but have
been put in terms of 1,/t, rather than t¥.

Table 2. Summary of approximate criteria for growth con-
trolling mechanism—Ilinear pressure decrease for time t,

tit, <03 Use criteria of Table 1

03 <tit, <30 Use criteria of Table 1, but note that
liquid inertia and intermediate regions

will shrink as t,/t, increases

t,/ty > 30 Heat transfer controls entire growth

Again, numerical solutions were also ob-
tained using the coupled equations (8) and (9),
with results essentially identical to those based
on equations (4) and (5).

SOLUTIONS TQO THE COUPLED EQUATIONS—
REAL FLUID (WATER)

If the foregoing criteria based on idealized
fluid results are to be of any practical use, their
relationship to the case of real fluids must be
examined. For a real fluid, the detailed growth
curves, even in normalized form, will depend on
the equilibrium vapor pressure and density
relations for the particular fluid over the tem-
perature range involved. But, the liquid inertia
controlled growth (early) and the heat transfer
controlled growth {asymptotic) do not depend
on the shape of the vapor pressure and density
relations of the fluid. Therefore, it seems possible
that the points at which the true growth curve
begins to deviate from the two limiting curves
may not depend too strongly on these relations.
To investigate this possibility, water was selected
as a real fluid example. The Plesset-Zwick
approximation in the form of equation (9) was
used for the interface temperature since this
result allows for a variable vapor density,
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whereas the Murdock approximation does not.
Numerical solutions of the coupled equations
{8) and (9), using empirical fits to actual water
vapor pressure and density data for equation
(6), were obtained for several temperature levels
and degrees of superheat. Representative results
are displayed in Figs. 5 and 6. For comparison,
the results for the idealized fluid case are shown
in the same figures. Comparison of Fig. 5 with

10 T T ™ T T T T
o=1-0 tiquid inertio
Fa00c g
08 €,0245 b
T, = 100°C Heat transfer, equation {13)
o2 o N
Iy
o4} ) 1
Numerical solutions, equations
(8) and (9)
for ideolized fiuid
o2 for woter N
i i i i i —_—
o [X+] 20 30 40 50 &0 70 80

F1G. 5. Coupled solutions for idealized fluid and waicr
compared to limiting cases with step pressure change.

Fig. 6 shows that for the same superheat, the
smaller the temperature {(or pressure) level, the
larger the deviation of the real fluid result from
the idealized fluid result. Results for the same
temperature level but smaller superheats showed
less deviation. These trends are to be expected.

-0 T T T T T T
Liquid inertia
o8- Numerical solutions,
Heat transfer, equations (8)and (9)
equation (13} for idealized fluid
o6 for water ot
>
o4k .
Ry =t
AT =g%"50
L €y,0°8" 4
02 o) 250°C
i i i i J A
o [Es) 20 30 40 50 &0 70
/_*

FiG. 6. Coupled solutions for idealized fluid and water
compared to limiting cases with step pressure change.
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The main aspect of these results is that the
values of R} and r*, at which significant differ-
ences betweeen the solution curves for the
coupled equations and the limiting cases are
observed, differ by much less than an order of
magnitude for the real fluid results as compared
to the idealized fluid results. This is true even
for the extreme case of Fig. 6, which has a low
temperature level and a very large superheat
resulting in an initial-to-final vapor density
ratio of almost 9. It may be concluded that the
criteria developed using the idealized fluid
results will serve as a good approximate criteria
for real fluids as well.

DISCUSSION

Griffith [5] in his early theoretical paper on
bubble growth rates at a surface in boiling
recognized that for large values of the Jakob
number, the assumption that dynamic effects
are unimportant is not valid. Cole and Shul-
man [11] pursued this point experimentally
by obtaining data for bubble growth from a
heated surface at subatmospheric pressures.
They also related the relative importance of
dynamic effects to the size of the Jakob number.
While it is true that the relative importance of
liquid inertia effects compared to heat transfer
effects depends strongly on the Jakob number,
that parameter is incomplete for the purpose
at hand since it contains no information about
the thermal conductivity or the slope of the
vapor pressure curve of the liquid. In contrast,
Tong [12] suggested that the measure of these
effects can be expressed in the group
(R/k)}* (Apjp). This group is also incomplete
since it does not contain any information on the
vapor density, the enthalpy of vaporization, or
the slope of the vapor pressure curve. The
dimensionless forms suggested here for bubble
radius and growth time each contain all of the
information contained separately in the two
above-mentioned parameters. In fact, R/R, is
just the square root of the parameter mentioned
by Tong divided by the square of the Jakob

L. W. FLORSCHUETZ and A. S. AL-JUBOURI

number. We note that Birkhoff, Margulies and
Horning [13] suggested essentially that liquid
inertia effects are negligible whenever
t » Ja’x/[8p(R)jp] or R » Ja’x/[8p(R)/p]*,
these critcria being very similar to those sug-
gested here. However, no discriminating values
were obtained and also, while these forms include
the pressure level itself, they do not include what
would seem to be more directly pertinent—a
characterization of the slope of the vapor pres-
sure curve which, of course, depends on the
pressure level.

Effect of pressure level and superheat

For a given fluid, the relative importance of
the two controlling mechanisms being con-
sidered here can depend quite strongly on the
pressure level and the superheat. This is illus-
trated for water in Fig. 7. These results are based
on the use of t/t, reaching the value of 30 as
indicated in Table 1 for heat transfer to become

100 T T T T T * T
Q12atm

0-38 atm

P11 TS W S S U SO S Y
i ] 20 30 40 50

AT, °C

Fi1G. 7. Values of ty, v. ATfor water at several pressure levels.
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the controlling mechanism. Note that for the
smallest pressure level indicated (012 atm)
liquid inertia effects will be significant since for
AT > 3°C it requires 10 ms or longer to attain
heat transfer controlled growth. This is mainly
because as the pressure level is lowered, the
vapor density and the slope of the vapor pres-
sure curve both decrease. However, at one at-
mosphere and small superheats, this time is less
than 01 ms. The conclusion that liquid inertia
effects are not significant for macroscopic growth
of water vapor bubbles at one atmosphere with
small superheats was first reached by Plesset
and Zwick [2] and Forster and Zuber [1] and
more recently by Waldman and Houghton [6]
For experimental verification see Dergara-
bedian [14] and Florschuetz, Henry and
Khan [15].

Perhaps more significantly, the present results
show that this conclusion also holds for quite
large superheats at pressure levels of one at-
mosphere and larger. A case in point is the
experimental data obtained by Hooper and
Abdelmessih [16] for spherically symmetric
bubble growth under uniform superheats rang-
ing from 68 to 388°C. For the smallest super-
heat the data was in good agreement with the
theoretical curve based on a heat transfer model,
but for the larger superheats the data fell
increasingly below the theoretical curves. This
discrepancy was tentatively attributed to the
neglect of liquid inertia effects in the theoretical
model. The present criteria indicate that even
for their highest superheat this explanation
is not correct. In particular, from Fig. 7, for
1 atmosphere and AT = 39°C, one gets approxi-
mately 03 ms for attainment of heat transfer
controlled growth, whereas Fig. 8 of [16] shows
that the discrepancy exists for much larger times
than this (data was obtained out to 3 ms). Thus,
some other explanation must be sought. It has
been suggested [10, 15] that although the
growth was initiated by suddenly exposing the
pressurized system to the atmosphere the pres-
sure during bubble growth was still greater than
one atmosphere and thus the actual equivalent

superheats were less than those quoted in [16].
Theofonous, Biasi, Isbin and Fauske [8] sug-
gested that the discrepancy may be attributed
to interface non-equilibrinm effects. Subsequent
work by Hooper, Eidlitz and Faucher {17, 18]
showed beyond doubt that the first explanation
is the correct one.

Reference [17],1 issued after the present study
was completed, contains comprehensive data
and analyses for over sixty tests of bubble
growth in water at uniform (though not always
constant) superheats. An “explicit correlation”
was used to compare the growth data to a heat
transfer model {termed asymptotic for constant
superheats and quasi-asymptotic for time vary~
ing superheats), while an *‘implicit correlation™
was used to compare the data to a model which
included heat transfer, liquid inertia, and surface
tension effects. Both correlations were based on
use of the Plesset-Zwick result for the interface
temperature, equation (3), but with the assump-
tion of constant vapor density. Coincidence of
the two correlations indicated asymptotic or
quasi-asymptotic behavior, while significant
deviation indicated nonasymptotic behavior.
The importance of liquid inertia effects relative
to heat transfer effects was also assessed by the
use of a “reduced acceleration™ basically de-
fined as p[RR + (3/2)R*)/[pT,) — p(t)], and
evaluated using the experimental measurements
for R(t) and p. (). When this quantity was less
than 03 the growth was considered asymptotic,
although for higher precision work use of the
value 0'1 was suggested. The tests were classified
into three main groups according to liquid tem-
perature level with general conclusions regard-
ing growth mode as follows: (a) high range,
280- 200°F, the growth is truly quasi-asymptotic
throughout; (b) intermediate range, 190-160°F,
there is a gradual changeover from the truly
quasi-asymptotic behavior of the high range to
the nonasymptotic behavior of the low range;
(c) low range, 140-100°F, the growth is highly
nonasymptotic.

+ The authors are indebted to Professor Hooper who
kindly provided copies of [17] and an advance copy of [18].
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Detailed application of the present criteria
(Tables 1 and 2) to the conditions of these tests
led to the same general conclusions. Several
examples from each temperature range are
summarized in Table 3. In each case Ry/R, < 5.

Hooper, Eidlitz and Faucher [17]

gg | Film  T(F)  ATCF 61 Lonsh

Eg No. (Toyt {To — T,,0t (ms) (ms)

€ | 318 2408 133 15 16

£ ] 312 2037 132 06 9
31-6 1840 1677 07 4

£ | 30-17 1814 95 06 7

g

g | 30-18 1602 82 05 3

Tt

[

E | 29915 1586 38 03 11
33-6 1402 165 09 1
31-3 1392 49 02 9

£ | 3122 1193 20 ~0 11

-

335 1170 92 035 2
32-1 1016 41 ~0 2

¥ Notation of [17).

1 Estimated from measured pressure curves given in [17].

§ Maximum valid or available bubble observation time.
| Based on graphical presentations given in [17].

Two of these cases, Films 31-3 and 31-22, are
exceptions to the general conclusion for the low
range, as was noted in [17] Significantly, the
present criteria also shows these two bubbles to
be approaching asymptotic growth during the
interval of observation. Note that this is mainly
a result of the relatively low superheats for these
cases. It is to be emphasized that the conclusions
reached by Hooper et al. are based on a detailed
examination of experimental results, while the
present criteria are purely theoretical results.
Their excellent extensive experimental results
generally verify the validity of the present criteria.
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Kosky [10] obtained data for water vapor
bubbles growing at uniform superheats ranging
from 105 to 36°C, and pressure levels from
0477 to 1'19 atm. He obtained reasonable
agreement with theoretical results which in-

Conclusions using bubble
growth measurements [17]}

Implicit vs.

t,it, Reduced
(ms) acceleration explicit
correlations
1240 - <01lt>0 Coincide
70 - <01,t>0 Coincide
17 <12 Z201,t>0 Very close
32 - <03, >01,t <12 Coincide
<01,t>12
86 <17 >03,1r <03 Close-drawing
<03,t>03 together
13 <070 >03,t <09 Very close
<03t > 09
12 <22 »>03,t>0 Way apart
17 <36 »>03,t <16 Apart---drawing
<03,t> 16 together
<03 52 »>03,1t <24 Apart—coincide
<03,t > 24 at 33 ms
0-23 46 »>03,1>0 Way apart
<03 50 »>03,t > Way apar

cluded both liquid inertia and heat transfer
effects [his equations (4) and (5)]. The present
criteria applied to his conditions show that the
time at which heat transfer effects become con-
trolling ranges from about 0'1 ms for his Run 45
up to about 1 ms for his Run 58 (Bubble 2). Since
the data for each of his runs covers a time interval
from about 0'1 ms to 10 ms, most of it falls in the
heat transfer region. Except for his Run 75,
Kosky did not show a comparison to the asymp-
totic solution of Plesset and Zwick [Kosky’s
equation (5) with T(R, 1) = T,]. However, such
a comparison, made by the present authors,
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shows that, except possibly for Run 58 (Bubble
2), the Plesset-Zwick theory matches the data
as well as the theory curves computed by Kosky.
In fact, if the Plesset—Zwick theory curves are
plotted on Kosky’s Figs. 9 and 10, they draw to
within at least 10 per cent of Kosky’s theoretical
curves by the times predicted by the present
criteria for heat transfer controlled growth.
Although Kosky’s data is valuable, bubble
diameters at least as small as 0-01 cm would have
to be measured to begin to clearly show liquid
inertia effects for the conditions of his tests.
This is an order of magnitude smaller than the
smallest bubble sizes he apparently was able to
measure with his experimental arrangement.

As an example of a case in which water vapor
bubbles grew under conditions where liquid
inertia effects dominated, the early work of
Plesset [3] is cited. He numerically solved the
modified Rayleigh equation incorporating only
liquid inertia and surface tension effects and
satisfactorily matched the radius-time data of
Knapp and Hollander [19] for both the growth
and collapse phases of cavitation bubbles on a
streamlined body in a water tunnel. The growth
times for these bubbles were less than 2 ms and
for the pressure levels and Ap’s involved result
in values of t/t, less than 0-25. Thus, the present
criteria (Table 1) indicate that the entire growth
should be in the liquid inertia region, which is
consistent with Plesset’s results.

Effect of fluid medium

For a given pressure level and equivalent
superheat (or pressure difference), the relative
importance of the two controlling mechanisms
can depend quite strongly on the fluid medium
involved. This is evident from Table 4. where the
characteristic lengths and times are tabulated

Table 4. Characteristic lengths and times for three fluids at
atmospheric pressure and for AT = 10°C

Fluid R, (cm) t, (s}
Water 22 x 1073 34 % 107°
Nitrogen 18 x 107# 'l x 1077
Potassium 38 x 1072 90 x 1073
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for three different fluids, all at the same pressure
level and for the same superheat. It is clear that
differences of several orders of magnitude exist.
These values, in conjunction with Table 1,
show that for the given conditions, liquid inertia
effects are essentially negligible for the water,
certainly so for the nitrogen, but may be signifi-
cant for the potassium.

An independent theoretical check on the
present criteria can be obtained by comparing
its predictions to theoretical curves presented by
Bornhorst and Hatsopoulos [7] for nitrogen,
water and potassium—-their Figs. 3, 4 and §
respectively. They plot R/R, vs. R/R, for the
asymptotic solution and for the solution based
on the coupled equations including heat transfer,
liquid inertia, surface tension, and interfacial
nonequilibrium effects. Of interest here are their
asymptotic solution curves as compared to their
solution curves for the coupled equations but
neglecting non-equilibrium effects (§ = 0). Not-
ing that their M and our Ry/R, are related by
Ro/R, = 2/\/M and using R,/R, > 10 for heat
transfer controlled collapse from Table 1, leads
to R/R, = 51 for nitrogen, their Fig. 3, 159 for
water, their Fig. 4, and 5000 for potassium, their
Fig 5. These values are in excellent agreement
with the points on the Bornhorst and
Hatsopoulos curves where their coupled solu-
tion (f =0) begins to coincide with their
asymptotic solution (f = 0, M = Q).

Experimental verification that bubble growth
in organic fluids for small, uniform superheats
and atmospheric pressure levels is controlled by
heat transfer has been reported by Dergara-
bedian [20] and by Florschuetz, Henry and
Khan [15]. Similar verification for liquid nitro-
gen was reported by Hewitt and Parker [21]
(see their Figs. 3-6).

Hewitt and Parker also obtained bubble
diameter vs. time data (their Figs. 9-11) for
liquid nitrogen subject to slow transient pressure
release to one atmosphere. They compared the
data to a numerical solution of equation (1)
assuming p, was constant and using the measured
pressure variation for p,, and to the Plesset—
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Zwick asymptotic solution. The data fell
between these two solutions so a computer
program for simultaneous solution of equations
(1) and (3) was written, but results were not
obtained because computer time requirements
were too large. Subsequently, Theofonous et al.
[8] obtained good agreement with the Hewitt
and Parker data by obtaining numerical solu-
tions for a theoretical model which included
both heat transfer and liquid inertia effects, and
also used the measured system pressure varia-
tion. The present criteria applied to liquid
nitrogen at one atmosphere and AT = 10°C
show that the time required to attain heat
transfer controlled growth is of the order of
107% s. Hewitt and Parker’s data were for AT’s
less than 10°C. It is, therefore, quite clear that a
model based solely on heat transfer effects
could be applied using the measured system
pressure variation as essentially equivalent to
the bubble interface pressure in order to fix the
interface saturation temperature variation. Or,
use of a reasonable value for ¢,, which was about
01 s, results in t,/t, ~ 105. Comparison with
Table 2 results in the same conclusion. Thus,
retention of only heat transfer effects in the
model of Theofonous et al. would give a theoreti-
cal curve identical to that of their Fig 10, and
also in satisfactory agreement with the data.
Such a numerical solution would be consider-
ably less involved than one for the coupled
liquid inertia and heat-transfer equations. In-
deed, if the system pressure variation can be
approximated as linear, the analytical solution
represented by equation (14) would be reason-
ably satisfactory.

In passing, it is also noted that the present
criteria predict well the point at which Scriven’s
[22] asymptotic solution begins to coincide
with the coupled solution (labeled equilibrium
solution) as presented by Theofonous et al., for
one special case involving sodium (their Fig. 2)
and one involving water (their Fig. 3).

Application to nonuniform superheat cases
Although the criteria developed here are
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based on a spherically symmetric model, it is of
interest to make application to several cases of
vapor bubbles growing from solid surfaces in
nonuniformly superheated liquids such as occur
during nucleate boiling processes.

Cole and Shulman [11] reported extensive
diameter versus time data for bubbles growing
from a horizontal ribbon in saturated nucleate
pool boiling, with six different liquids at various
pressure levels and wall superheats. They com-
pared all of their data with the Forster-Zuber
equation for spherically symmetric heat diffu-
sion controlled growth [1], but with the super-
heat replaced by (7, — T))/2 to take some
account of the fact that the liquid superheat
actually drops from (T,, — T,) at the wall to
zero at some point away from the wall. Applica-
tion of the present criteria to each of their tests
showed (with the single exception of one toluene
bubble) that whenever ty; was of the same order
or larger than the bubble observation time the
data points fell significantly below the Forster—
Zuber equation. But when ty; was small com-
pared to the observation time the agreement was
fairly reasonable. This tends to verify the specu-
lation given in [11] that liquid inertia effects
were significant for some of their tests at sub-
atmospheric pressures.

A very recent work by Sernas and Hooper [23]
had as a major objective the determination of
tyr based on experimental results. A result was
reported for water vapor bubbles growing at a
heated wall during saturated nucleate boiling
at a pressure level of one atmosphere for
T, — T, = 23°F (12-8°C). The estimated initial
growth period from nucleation to the time at
which growth begins to follow the law R =
(constant) t* was determined to be in the range
43-60 us, with 50 us as the most probable value.
The zero time datum was established by the use
of streak photography in combination with
framing photography. If, to account somewhat
for the nonuniform superheat adjacent to the
heating surface, one uses an average value
(T,, — T)2 for the value of AT, Fig 7 gives
tgr about 70 us. The agreement with the experi-
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mental value reported by [23] is excellent,
particularly when one considers the relationship
between the model on which the prediction is
based and the actual experimental conditions.

CONCLUDING REMARKS

The authors believe that the particular dimen-
sionless variables used here are the most
appropriate that have been suggested to date for
determination of the relative importance of
liquid inertia and heat transfer effects. Further-
more, particular discriminating values of these
dimensionless variables have been suggested as
summarized in Tables 1 and 2. That these
criteria lead to reasonable predictions is sup-
ported by the comparisons with previous
experimental and theoretical work as outlined in
the discussion presented in the preceding section.
Estimates based on the criteria should be useful
to investigators in designing experiments invol-
ving vapor bubble growth phenomena and in
selecting or developing appropriate theoretical
models for comparison with the data. If resulting
estimates are used with proper caution, the
criteria can also be applied to bubble growth
phenomena associated with boiling heat transfer
and flashing or cavitatien processes occurring in
practice under various particular conditions.
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CRITERES QUANTITATIFS GENERAUX POUR PREDIRE LE MECANISME
CONTROLANT LA CROISSANCE DE BULLES DE VAPEUR DANS DES LIQUIDES
SURCHAUFFES

Résumé—On présente des critéres afin de prédire I'importance relative de 'inertie du liquide et le transfert
thermique dans le liquide, comme contrdlant la croissance d'une bulle de vapeur a symétrie sphérique
dans des liquides. Le systéme d’équations renfermant les deux effets ci-dessus est présenté sous une forme
adimensionelle appropriée. Les solutions numériques du systéme d’équations sont comparées aux solutions
limites du processus de croissance contr6lé uniquement par inertie du liquide et uniquement par le transfert
thermique afin de déterminer les régions d’importance respective de ces deux mécanismes. On considére
les cas de croissance initiée par une décroissance échelon et une décroissance linéaire de la pression du
systéme. Les critéres sont développés dans le cas d’un fluide idéalis¢ ayant une densité de vapeur constante,
et une courbe de pression de vapeur linéaire et on montre ensuite qu’ils sont approximativement
indépendants des lois de densité de vapeur et de pression de ce fluide particulier. L’applicabilité et I'utilité
de ces critéres sont établies et illustrées par comparaison des prédictions basées sur eux aux études
théoriques et aux résultats expérimentaux pris dans la littérature.

VERALLGEMEINERTE QUANTITATIVE KRITERIEN FUR VORAUSSAGEN UBER DEN
REGELMECHANISMUS VON BLASENWACHSTUMSRATEN IN UBERHITZTEN
FLUSSIGKEITEN
Zusammenfassung—Fiir Voraussagen iiber die relative Bedeutung der Massentrigheit und des
Wirmeiiberganges in der Fliissigkeit als regelnde Einfliisse auf das kugelsymmetrische Blasenwachstum
in Flissigkeiten werden Kriterien angegeben. Die gekoppelten regulierenden Gleichungen sind unter
Beriicksichtigung der oben angefithrten Effektezuerst in passende dimensionslose Formen gebracht
worden. Die numerischen Lésungen der gekoppelten Gleichungen werden dann mit den einschrinkenden
Losungen fiir nur tragheitskraftgeregelte und nur wirmeiibergangsgeregelte Wachstumsprozesse ver-
glichen, um die betreffenden Bereiche nach der Wichtigkeit dieser beiden Mechanismen zu beurteilen.
Beide Fille des Blasenwachstums, ob sie durch stufenférmige, oder lineare Druckabnahme im System
eingeleitet wurden, sind beriicksichtigt worden. Die Kriterien werden fiir den Fall einer idealen Fliissigkeit
mit konstanter Dampfdichte und einer linearen Dampfdruckkurve entwickelt. Es zeigt sich dabei, dass die
Kriterien anndhernd unabhingig von der Dampfdichte und den Druckbeziehungen der einzelnen
Fliissigkeiten sind. Die Anwendbarkeit und Niitzlichkeit der Kriterien werden unterstiitzt und veran-
schaulicht durch den Vergleich der auf diesen Kriterien beruhenden Voraussagen mit fritheren theoreti-
schen und experimentellen Ergebnissen aus der Literatur.

OBOBUIEHHBLIE KOAUMYECTBEHHDLIE RPUTEPUN QJsI PACHEITA
MEXAHW3MA POCTA IIV3BIPBHKOB ITAPA, SABUCHAIHE'O OT EI'0O
UHTEHCUBHOCTH, B MEPETPETHIX HKUIAKOCTAX

Axnoramua—IIpejcraBiensl KpPUTEPUH [JJs pacyeTa OTHOCHTEILHOIO BIIMAMNIA HHEPIUK
HMULKOCTH N TerniooOMeHa B HAKOCTH KAK ONpelesIAnlUX MEXaHU3MOB TIpH pocTe cepn-
YeCKH CHMMETPHYHBIX My3BIPBKOB Hapa B HUAKOCTHAX. CHeTeMa onpeles HIOMMX ypaBHeHnH,
OIMMCHLIBAIONMX BJIMAHKE 000MX HABBANHLIX MEXAHMBMOB, /[aHa clUAuaJda B Oe3pasMepnoMm
BHe. 3aTeM cjaeiyeT cpaBHeHHE YMCHEHHBIX PelleHHi CuCTeMbl YPUBHEHIH ¢ PCIUeHUAMM jLTH
KpafiHnX CJIyyaeB OTAeNbHO I HHEPIHHL RNAKOCTH 11 OTARILHO A TellIolepenoca Kan
MEXaHU3MOB, ONpedesOIHX TPOLECCEl POCTa, € IIeJbI0 OLPEICTCHIs HAHGO1ee BAIKIBIX
YYACTROB JIBYX MEXAlN3MOB. PaccmarpuBaroTes cjiy4al poCTd, BBI3BAHIOIO CTYIMeHYATBIM 1
JIMHEeTHBIM ymeubmeuumlu JaBJCHUA B CHCTCME. Pu:lpa6OTallLI I{[)IlT(‘pllll JUIA (‘,le‘luﬂ
W;1eaTH3upOBAHNOH HHJIKOCTH ¢ HOCTOAHHON 1LIOTHOCTBIO Hapa I HMHeHOH 3aBUCUMOCThHIO
JAaBJICHHA T1apa, KOTOPLIE JlaJiee PACCMATPHBANTCH HpHOIHBUTEALHO  He3ARICHMBIMIL  OT
OTHONIENMA [IOTHOCTU Hapa i OTHOLIEHHA JaBJCHUs B OTOH HUIROCTIL. Hrodt upogemoneT-
PHPOBATH MPUMEHUMOCTD JAHHBIX KPUTEPHEB, IPOBOJXUTCH CPABHEHHE PACUETOB, NPOBEACHHBIX
110 OTHM KPHTEPHAM, ¢ H3BECTHBIMU B JIUTEpATYpe TEOPETHUYECKHMH H DKCHePUMENTAIbHBIMU
JAHHBIMH .



