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Abstract-Criteria are presented for predicting the relative importance of the inertia of the liquid and heat 
transfer in the liquid as controlling effects for spherically symmetric vapor bubble growth in liquids. The 
coupled governing equations including both of the above effects are first cast in appropriate dimensionless 
forms. Then numerical solutions of the coupled equations are compared to the limiting solutions for solely 
liquid inertia and solely heat transfer controlled growth processes, in order to determine the respective 
regions of importance of these two mechanisms. The cases of growth initiated by a step decrease and a linear 
decrease in system pressure are both considered. The criteria are developed for the case of an idealized 
fluid having a constant vapor density and a linear vapor pressure curve, and then shown to be approxi- 
mately independent of the vapor density and pressure relations of the particular fluid. The applicability 
and usefulness of the criteria are supported and illustrated by comparison of predictions based on them 

with previous theoretical and experimental results taken from the literature. 

NOMENCLATURE 

specific heat of liquid ; 
enthalpy of vaporization ; 
Jakob number defined as 

P c,AT/ ~0'3~~; 
thermal conductivity of liquid ; 
dimensionaless group used in [7]; 
equivalent to 4(R,/R,,)’ ; 
vapor pressure ; 
instantaneous system pressure; 
final system pressure ; 
pressure difference defined as 

k:k; -;;s fl; 
3 

initial bubble radius ; 
bubble interface displacement, 
CR - R,); 
characteristic length for normaliza- 

t Currently with College of Engineering, Baghdad Uni- 
versity, Baghdad, Iraq. 

R*, 

R’,, 

R;, 

s, 

T co, 

AIT: 

t, 
tHT, 

tion of bubble radius defined by 
.[a2 rc(p/Ap)* ; 
dimensionless bubble radius defined 
as Rj3&/3)R,; 
dimensionless initial bubble radius 
defined as R,j37c( J3)R, ; 
dimensionless bubble interface dis- 
placement defined as Rd/3n( J3)R, ; 
transformation variable defined as 
R*3. 

bubble interface temperature ; 
saturation temperature correspond- 
ing to final system pressure ; 
liquid temperature at large distance 
from bubble ; 
superheat temperature difference de- 
fined as (T, - TJ; 
time ; 
time at which heat-transfer effects 
become dominant ; 
system pressure release time ; 

587 



588 L. W. FLORSCHUETZ and A. S. AL-JUBOURI 

t In 

t* 9 
t* I> 

u, 

characteristic time for normalization 
of bubble growth time defined by 

Ja2 ~(p/Ap) ; 
dimensionless time defined as t/3nt, ; 
dimensionless system pressure release 
time defined as t,/3nt,; 
transformation variable defined prior 
to equation (8). 

Greek symbols 

Pl dimensionless group used in [7]; 
p = 0 corresponds to assumption of 
thermodynamic equilibrium at bub- 
ble interface ; 

E “1 vapor pressure ratio defined as 

P”lP”K) ; 
E “, co, initial vapor pressure ratio defined as 

P”Kl)iP”K); 
K, thermal diffusivity ; 

X”, dimensionless pressure ratio defined 

as [p,(L) - P,(TWP; 
II a33 dimensionless pressure ratio defined 

as Cp,(Td - P&Wp; 
PI 
P”? 
4, 

density of liquid ; 
density of vapor ; 
dimensionless temperature ratio de- 
fined as (T, - 7J/AT. 

INTRODUCTION 

A VAPOR bubble initially at equilibrium with its 
surrounding liquid will grow if the liquid 
pressure is decreased or if the temperature is in- 
creased. At early times the growth rate is con- 
trolled by the inertia of the liquid mass subject to 
the difference in pressure between the bubble 
interface and points in the liquid at a large 
distance from the interface. However, as the bub- 
ble grows, evaporation at the interface causes the 
temperature there to drop. The vapor pressure at 
the interface drops correspondingly until it 
reaches a value essentially equal to the liquid 
system pressure. The asymptotic growth is then 
controlled by the rate at which heat transfer from 
the liquid to the interface occurs in order to sup- 
ply the necessary enthalpy of vaporization. For 
intermediate times, both liquid inertia and heat- 

transfer effects are significant in controlling the 
growth rate. Work on this coupled problem was 
first reported by Forster and Zuber [l] and by 
Plesset and Zwick [2]. They showed that for 
vapor bubbles growing from an equilibrium 
state in slightly superheated water at a pressure 
level of one atmosphere, the heat-transfer mecha- 
nism becomes controlling at such short times 
that liquid inertia effects may be entirely neg- 
lected. Earlier, Plesset [3] had shown that 
experimental radius-time curves for cavitation 
bubbles in water at subatmospheric pressure 
levels could be matched by considering only 
liquid inertia effects. In a subsequent review 
paper, Plesset [4] pointed out that liquid inertia 
effects become more significant as the pressure 
level is decreased. He noted that this was because 
the vapor density and the slope of the vapor 
pressure curve both decrease with the pressure 
level. 

Since the early investigations mentioned 
above, the subject of vapor bubble growth has 
received much attention, most of it arising from 
interest in flashing, cavitation, and nucleate 
boiling phenomena. In spite of this, there does 
not appear to be available any practically usable 
criteria by which an investigator can obtain a 
good estimate of which growth controlling 
effects are important under his particular condi- 
tions. In addition to liquid inertia and heat 
transfer effects, other effects on the growth rate 
are surface tension, normal viscous stress at the 
bubble interface, and possible nonequilibrium 
effects at the interface. These effects have been 
included in analyses presented in several recent 
publications [6-81. These papers present results 
for certain special cases invoIving particular 
fluids. While effects such as nonequilibrium 
may be important under some extreme condi- 
tions, it remains true that for macroscopic 
bubble growth under most conditions liquid 
inertia and/or heat-transfer effects are the domi- 
nant mechanisms. In order to put the relative 
importance of these effects on a more generalized 
quantitative basis, a theoretical investigation 
was performed using a single bubble model in an 
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infinite body of superheated liquid with spheri- 
cally symmetric phase growth. The coupled 
governing equations in appropriate dimension- 
less forms including both liquid inertia and heat- 
transfer effects were solved by numerical tech- 
niques resulting in radius-time curves. These 
solutions were compared to the solutions for the 
two limiting cases for purely heat transfer and 
purely liquid inertia controlled processes. In 
this way the respective regions where liquid 
inertia, heat transfer, or both effects control 
the growth rate were mapped out in terms of 
dimensionless quantities. 

It is the purpose of this paper to report these 
results and to illustrate their validity and 
application. The latter is done by comparing 
experimental and theoretical results selected 
from the literature with the generalized results 
obtained here. 

FORMULATION OF THE PROBLEM 

The equation of motion for spherically sym- 
metric bubble growth in an incompressible 
liquid is the Rayleigh equation, 

R# + ; k2 = f (p, - p,) UH 

Here the effects of surface tension and normal 
viscous stresses at the interface are neglected, 
and the condition pv 4 p must be satisfied. 

We use two approximate solutions for the 
temperature at the bubble interface. One is a 
result due to Murdock [9] as reported by 
Bornhorst and Hatsopoulos [7], 

obtained using an integral technique. The other 
is the well-known Plesset-Zwick solution [2] 
which may be written as 

~_~J!l!K + ’ $P,R') 

m L 0 s 3k n 
o Cl R4(v) dyl* 

dz. (3) 

t The dots denote time derivatives. 

Both of these results are based on the assumption 
of a thin thermal boundary layer in the liquid 
adjacent to the bubble wall and constant liquid 
properties. Also, equation (2) involves the as- 
sumption that p0 is constant, while for equation 
(3) it is necessary only to assume that pu is 
uniform. Equation (1) is coupled with equation 
(2) or equation (3) by the equilibrium vapor 
pressure and vapor density relations pv = p. (?J 
and pv = pv (TJ assumed to be valid at the 
bubble interface. Initial conditions are R = R, 
and k = 0 at t = 0. This completes the problem 
specification in dimensional form. 

Normalization of the equations requires the 
selection of an appropriate characteristic length 
and time. One might select R, for the character- 
istic length, but this is not particularly appropri- 
ate for the case of bubble growth as it would be 
for collapse, since the asymptotic growth is 
independent of R,. There is also no obvious 
characteristic time. However, normalization of 
the equations with respect to an arbitrary length 
and an arbitrary time, followed by inspection 
of the equations shows that selection of R, and 
t, as defined in the nomenclature is appropriate. 
With these, equations (1) and (2) become 

R*#* + $k* = &cm - TC,] (4) 

and 

*,= 911 + (R*3-R;3)k* + 
I 

()[ 2 1 R* 
(5) 

These equations are coupled by 

n, = 7t, (ei) and E, = E, (e,), (6) 

with initial conditions 

R* = R&k* = Oat t* = 0. (7) 

Normalization of equations (1) and (3) fol- 
lowed by transformation?_ according to 

s = R*3 and u = 7 R*4(y) dy, 
0 

tThis transformation was originally used by Plesset and 
Zwick 121. 
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leads to 

ss” + $st2 = +I$ [7c, - 7cJ 

and 

Ed (E s)’ 
‘i= &dv s 

0 

(9) 

with initial conditions 

s = Rg3, s’ = 0 at u = 0. (IO) 

In summary, the equations to be solved are 
(4H7) when using Murdock’s equation for the 
interface temperature and (8), (9), (6) and (10) 
when using the Plesset-Zwick equation for the 
interface temperature. We note that once 
7c,(8J, e,(eJ, and the system pressure variation 

7cC.E are specified, these two sets of equations 
involve only one parameter, namely R,*. 

For the sake of completeness, solutions for the 
limiting cases where either heat transfer or 
liquid inertia controls the entire bubble growth 
process are first outlined. For these cases the 
results in normalized form do not require the 
specification of a particular fluid. Next, the 
numerical solutions for the coupled case are 
examined. This requires selection of a particular 
fluid in order to specify n,(&) and e,(eJ. We select 
two fluids : (i) an idealized fluid having a constant 
vapor density and a linear vapor pressure curve, 
and (ii) water. Results were obtained for two 
types of system pressure variation: (i) a step 
decrease, x, = 1, for t* > 0, and (ii) a linear 
decrease to a constant final value, 

71, ,I> = PIP 0 < t* < t,* 

I 

(11) 
71% = 1, t* > t, * 

SOLUTIONS FOR LIMITING CASES 

Liquid inertia controls 
Here the vapor pressure is assumed to remain 

constant at its initial value, thus 71, = 0 in 
equation (4). For a step decrease in system 

tThe primes denote derivatives with respect to u. 

pressure the solution to equation (4) is the well 
known Rayleigh solution. Graphical representa- 
tions appear in Figs. 1, 5 and 6. 

For a linear decrease in system pressure to a 
constant value, analytical solutions to equation 
(4) with n, = 0, are not available. Numerical 
solutions have been obtained as part of this 
study. A graphical representation appears in 
Fig. 4. 

Heat transfer controls 
Neglecting the terms on the left hand side 

of equation (4) which represent liquid inertia 
effects leads to nV(Bi) = x,; i.e. the vapor pres- 
sure assumes a value always equal to the system 
pressure. Thus, for the step decrease in system 
pressure, the vapor pressure and hence the 
saturation temperature at the bubble interface 
remains constant during the growth, i.e. Bi = 1. 
Also, the vapor density remains constant, E, = 1, 
The solution to equation (5), the Murdock 
equation, is then 

t*-_~[$J +;(E!) -I]. (12) 

The solution to equation (9), the Plesset-Zwick 
equation, is 

t*=Y$~~+;(E!&], (13) 

As pointed out by Bornhorst and Hatsopoulus 
[7] these results, though based on different 
approximate techniques, give bubble radii dif- 
fering by only about 2 per cent. Both approxi- 
mations do, however, involve the thin thermal 
boundary layer assumption. 

In examining the heat transfer limiting case 
for a linear decrease in system pressure to a 
constant value it is necessary to specify the vapor 
pressure relation. Assuming a linear vapor 
pressure relation, 71, = Bi, the temperature vari- 
ation at the bubble interface will be linear for 
0 < t* < t,* and constant for t* > t:. The solu- 
tion to equation (5) then becomes 
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SOLUTIONS TO THE COUPLED EQUATIONS 
IDEALIZED &-LUID 

The idealized fluid is taken to be one for 
which it, = ei and E, = 1. Results are first 
presented for the step decrease and then for the 
linear decrease in system pressure. 

Step decrease in system pressure 
Equation (4) with n;, = 1 can be combined 

with equation (5) to give a single nonlinear 
ordinary differential equation with initial condi- 
tions given by equation (7). The only parameter 
is now RX. This equation was integrated numeri- 
cally by a fourth-order Runge-Kutta technique, 
for values of Rb = 4, 2, 1, 0.1, 0.01 and 0901. 
A solution for one of these cases is displayed 

Numerml solution 
equations (4)ondi5) 

r I , / 1 / I I 
0 I.0 2.0 3.0 4.0 5.0 6,O 70 60 

f‘ 

FIG. 1. Comparison between limiting and coupled solutions 
for idealized fiuid with step pressure change. 

graphically in Fig. 1. The plot is for the dimen- 
sionless bubble interface displacement 
Rz = R* - RX vs. t*. For comparison the solu- 
tions for the corresponding limiting cases are 
displayed on the same plot. As would be ex- 
pected, the solution for the early growth coin- 

cides with the limiting case for a liquid inertia 
controlled process, while the asymptotic growth 
eventually coincides with the solution for a heat 
transfer controlled process. The numerical solu- 
tion was in agreement with equation (12) at 
times larger than those shown on the plot. For 
intermediate times the coupled solution clearly 
deviates from both limiting cases. 

In order to delineate those ranges of Rz and 
t* over which a particular mechanism domi- 
nates, the following procedure was adopted. By 
comparing the numerical solutions for the 
coupled equations to the liquid inertia solution, 
values of R1; and t* were selected at the point 
where R* based on the liquid inertia solution 
deviates by 10 per cent from the value of R* 
based on the coupled solution. Values were also 
chosen where the coupled solution for R* 
comes to within 10 per cent of the value for the 
heat transfer solution. The selected values for 
R$ and t* are plotted vs. RX, (the only parameter) 
in Figs. 2 and 3 respectively. If one assumes that 
for the growth to be considered significant the 
radius must at least double, then the only 
region of interest on Fig. 2 is to the right of the 

Intermediate 

FIG. 2. Classification of growth controlling mechanism 
according to RI as a function of R,*. 

line marked Rd = R,. In this region the dis- 
criminating values of R: are essentially in- 
dependent of R$ From Fig. 2 one may conclude 
that for R$ > O-3 all significant growth is a 
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heat transfer controlled process. For R,* < 0.3, 
a classification in terms of R$ must be made; i.e. 
for Rz < 0.013 liquid inertia controls, 
for R, > 0.66 heat transfer controls, and 
0.013 < R$ < 0.66 is an intermediate region 
where both effects are significant. 

10-1: 

lo-2 : 
: Liquid inertia Intermediate 

I‘* 
FIG. 3. Classification of growth controlling mechanism 

according to t* as a function of R,t. 

parison to the limiting cases results in essentially 
the same criteria as is summarized in Table 1. 

Linear decrease in system pressure 
Here equations (4) and (5) were solved numeri- 

cally with x, given by equation (11) and the 
initial conditions given by equation (7). Now, 
in addition to RE the pressure release time t: 

is also a parameter. Since here the parametric 
effect of t,* is of major interest, solutions were 

Table 1 Summary of approximate criteria for growth con- 
trolling mechanism--step pressure decrease 

Liquid inertia Intermediate Heat 
controls transfer 

controls 

R,/R, > 5 Before radius 
doubles 

RJR, < 0.2 0.2 < RJR, < 10 RJR, > IO 
R,!R, c; 5 

t/t” < 0.3 0.3 < t/t, < 30 t/t, > 30 

Turning to Fig. 3, and looking only at the 
region for Rg < 0.3, the process may be said to 

obtained for six values of tr ranging from 0.02 

be heat transfer controlled for t* > 3.6. The 
to 20, with Rz = OWL The result for t,* = 4 

discriminating value of t* for liquid inertia 
1s displayed in Fig. 4 and compared to the 

control does vary somewhat with R& but if one 
solutions for the corresponding limiting cases. 

selects, say, t* < 0.03 liquid inertia control is 
The results for t,* < 0.03 were essentially identi- 

assured. These results are summarized in Table 
cal to those for the step change case, t,* = 0. 

1. However, the summary has been put in terms 
For large values of tf, the intermediate region 

of the dimensionless quantities RJR, R/R, 
starts to shrink and for t,* > 4 the heat-transfer 

and t/t, which differ only by constant factors 
from Rg, Rz, and t* respectively. 

1 Numerical solutions to the coupled equations 
(8) and (9), which involve the Plesset-Zwick 
approximation for the interface temperature, 0.6 - 

were also obtained for the idealized fluid case 6;” 
for values of Rz ranging from 0.05 to 4. These 
results, when compared to those using the 
Murdock approximation, agree for the early 
growth, deviate slightly for the intermediate 
growth, and eventually draw to within 2 per cent 0 I.0 20 3 0 4.0 5.0 60 70 

.f 

J 
80 

of each other for the asymptotic growth. The r 

important point here is that the use of the solu- 
FIG. 4. Comparison between limiting and coupled solutions 
for idealized fluid with linear pressure variation to constant 

tions based on equations (8) and (9) for com- value at t.*. 
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limiting solution remains within 10 per cent 
of the coupled solution for the entire growth. For 
0.03 -C t,* -C 4 the step change criteria can be 
used as a guide, but it should be kept in mind 
that the liquid inertia and intermediate regions 
will become less important as t: increases. The 
suggested criteria for the linear system pressure 
change are summarized in Table 2, but have 
been put in terms of t,/t, rather than t,*. 

Table 2. Summary of approximate criteria for growth can- 
trolling mechanism-linear pressure decrease for time t, 

_ --z_:z 
t,jt, < 03 Use criteria of Table 1 
.__~___ _. ._._..___~ ---.. ~- 
03 c: t,:t, < 30 Use criteria of Table 1, but note that 

liquid inertia and intermediate regions 
will shrink as t,& increases 

_-- 

t,/t. > 30 Heat transfer controls entire growth 
- 

Again, nume~~al solutions were also ob- 
tained using the coupled equations (8) and (9), 
with results essentially identical to those based 
on equations (4) and (5). 

SOLUTIONS TO THE COUPLED EQUATIONS- 
REAL FLUID (WATER) 

If the foregoing criteria based on idealized 
fluid results are to be of any practical use, their 
relationship to the case of real fluids must be 
examined. For a real fluid, the detailed growth 
curves, even in normalized form, will depend on 
the equilibria vapor pressure and density 
relations for the particular fluid over the tem- 
perature range involved. But, the liquid inertia 
controlled growth (early) and the heat transfer 
controlled growth (asymptotic) do not depend 
on the shape of the vapor pressure and density 
relations of the fluid. Therefore, it seems possible 
that the points at which the true growth curve 
begins to deviate from the two limiting curves 
may not depend too strongly on these relations. 
To investigate this possibility, water was selected 
as a real fluid example. The Plesset-Zwick 
approximation in the form of equation (9) was 
used for the interface temperature since this 
result allows for a variable vapor density, 

F 

whereas the Murdock approximation does not. 
Numerical solutions of the coupled equations 
(8) and (9), using empirical fits to actual water 
vapor pressure and density data for equation 
(6), were obtained for several temperature levels 
and degrees of superheat. Representative results 
are displayed in Figs. 5 and 6. For comparison, 
the results for the idealized fluid case are shown 
in the same figures. comparison of Fig. 5 with 

0 IO 20 30 40 50 60 70 80 

f’ 

FIG. 5. Coupled solutions for idealized fluid and waxr 
compared to limiting cases with step pressure change, 

Fig. 6 shows that for the same superheat, the 
smaller the temperature (or pressure) level, the 
larger the deviation of the real fluid result from 
the idealized fluid result. Results for the same 
temperature level but smaller superheats showed 
less deviation. These trends are to be expected. 

0 I.0 20 3~0 4.0 50 6-o 7.0 

f* 

I% 6. COUPM solutions for idealized fluid and water 
compared to limiting cases with step pressure change. 
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The main aspect of these results is that the 
values of Rz and t*, at which significant differ- 
ences betweeen the solution curves for the 
coupled equations and the limiting cases are 
observed, differ by much less than an order of 
magnitude for the real fluid results as compared 
to the idealized fluid results. This is true even 
for the extreme case of Fig. 6, which has a low 
temperatu~ level and a very large superheat 
resulting in an initial-to-any vapor density 
ratio of almost 9. It may be concluded that the 
criteria developed using the idealized fluid 
results will serve as a good approximate criteria 
for real fluids as well. 

DISCUSSION 

Griffith [S] in his early theoretical paper on 
bubble growth rates at a surface in boiling 
recognized that for large values of the Jakob 
number, the assumption that dynamic effects 
are unimportant is not valid. Cole and Shul- 
man [ll] puraued this point experimentally 
by obtaining data for bubble growth from a 
heated surface at subatmospheric pressures. 
They also related the relative important of 
dynamic effects to the size of the Jakob number. 
While it is true that the relative importance of 
liquid inertia effects compared to heat transfer 
effects depends strongly on the Jakob number, 
that parameter is incomplete for the purpose 
at hand since it contains no information about 
the thermal conductivity or the slope of the 
vapor pressure curve of the liquid. In contrast, 
Tong [12] suggested that the measure of these 
effects can be expressed in the group 
(R/r@ (An/p), This group is also incomplete 
since it does not contain any info~ation on the 
vapor density, the enthalpy of vaporization, or 
the slope of the vapor pressure curve. The 
dimensionless forms suggested here for bubble 
radius and growth time each contain all of the 
information contained separately in the two 
above-mentioned parameters. In fact, R,iR,, is 
just the square root of the parameter mentioned 
by Tong divided by the square of the Jakob 

number. We note that Birkhoff, Margulies and 
Horning [13] suggested essentially that liquid 
inertia effects are negligible whenever 
t $ Jffz~~~8~~)ip] or R + Ju~~~[~~R~/~~~, 
these criteria being very similar to those sug- 
gested here. However, no discriminating values 
were obtained and also, while these forms include 
the pressure level itself, they do not include what 
would seem to be more directly pertinent--a 
characterization of the slope of the vapor pres- 
sure curve which, of course, depends on the 
pressure level. 

Eflect of pressure level and superheat 
For a given fluid, the relative importance of 

the two controlling mechanisms being con- 
sidered here can depend quite strongly on the 
pressure level and the superheat. This is illus- 
trated for water in Fig. 7. These results are based 
on the use of r& reaching the value of 30 as 
indicated in Table 1 for heat transfer to become 

AT, ‘C 

FIG. 7. Values of tm v. A?‘for water at several pressure levels. 
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the controlling mechanism. Note that for the 
smallest pressure level indicated (@12 atrn) 
liquid inertia effects wilI be significant since for 
AT> 3°C it requires 10 ms or longer to attam 
heat transfer controlled growth. This is main& 
because as the pressure level is lowered, the 
vapor density and the slope of the vapor pres- 
sure curve both decrease. However, at one at- 
mosphere and small superheats, this time is less 
than 0-l ms. The conclusion that liquid inertia 
effects are not significant for macroscopic growth 
of water vapor bubbles at one atmosphere with 
small superheats was first reached by Plesset 
and Zwick [2] and Forster and Zuber [I] and 
more recently by Watdman and Houghton [6]. 
For experimental verification see Dergara- 
bedian [14] and Florschuetz, Henry and 
Khan [15]. 

Perhaps more significantly, the present results 
show that this conclusion also holds for quite 
large superheats at pressure levels of one at- 
mosphere and larger. A case in point is the 
experimental data obtained by Hooper and 
Abdelmessih [ 161 for spherically symmetric 
bubble growth under uniform superheats rang- 
ing from 6% to 38%‘C. For the smallest super- 
heat the data was in good agreement with the 
theoretical curve based on a heat transfer model, 
but for the larger superheats the data fell 
increasingly below the theoretical curves. This 
discrepancy was tentativeIy attributed to the 
neglect of liquid inertia effects in the theoretical 
model. The present criteria indicate that even 
for their highest superheat this expianation 
is not correct. In particular, from Fig. 7, for 
1 atmosphere and AT = 39°C one gets approxi- 
mately @3 ms for attainment of heat transfer 
controlled growth, whereas Fig. 8 of [16] shows 
that the discrepancy exists for much larger times 
than this (data was obtained out to 3 ms). Thus, 
some other explanation must be sought. It has 
been suggested [lo, 15] that although the 
growth was initiated by suddenly exposing the 
pressurized system to the atmosphere the pres- 
sure during bubble growth was still greater than 
one atmosphere and thus the actual equivalent 

superheats were less than those quoted in [16]. 
Theofonous, Biasi, Isbin and Fauske [S] sug- 
gested that the discrepancy may be attributed 
to interface non~~lib~um effects, Subsequent 
work by Hooper, Eidlitz and Faucher [i7, 181 
showed beyond doubt that the first explanation 
is the correct one. 

Reference [ 17],t issued after the present study 
was completed, contains comprehensive data 
and analyses for over sixty tests of bubble 
growth in water at uniform (though not always 
constant) superheats. An “explicit correlation” 
was used to compare the growth data to a heat 
transfer model (termed asymptotic for constant 
superheats and quasi-asymptote for time vary- 
ing superheats), while an “implicit correlation” 
was used to compare the data to a model which 
included heat transfer, liquid inertia, and surface 
tension effects. Both correlations were based on 
use of the Plesset-Zwick result for the interface 
tem~rature, equation (3X but with the assump- 
tion of constant vapor density, Coincidence of 
the two correlations indicated asymptotic or 
quasi-asymptotic behavior, while significant 
deviation indicated nonasymptotic behavior. 
The importance of liquid inertia effects relative 
to heat transfer effects was also assessed by the 
use of a “reduced acceleration” basically de- 

fined as p[Rx + (3/2)~21i[~,(GJ - p,(t)], and 
evaluated using the experimental measurements 
for R(t) and p,(t). When this quantity was less 
than O-3 the growth was considered asymptotic, 
although for higher precision work use of the 
value 0.1 was suggested. The tests were classified 
into three main groups according to liquid tem- 
perature level with general conclusions regard- 
ing growth mode as follows: (a) high range, 
280- 2oO”F, the growth is truly quasi-asymptotic 
throughout; (b) intermediate range, lQO--160”F, 
there is a gradual changeover from the truly 
quasi-asymptotic behavior of the high range to 
the nonasymptotic behavior of the low range; 
(c) low range, 140-IWF, the growth is highly 
nonasymptoti~, .__ -_ . 

t The authors are indebted to Professor Hooper who 
kindly provided copies of [17] and an advance copy of [IS]” 
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Detailed application of the present criteria Kosky [lo] obtained data for water vapor 
(Tables 1 and 2) to the conditions of these tests bubbles growing at uniform superheats ranging 
led to the same general conclusions. Several from 10.5 to 36”C, and pressure levels from 
examples from each temperature range are 0.477 to 1.19 atm. He obtained reasonable 
summarized in Table 3. In each case R,/R, < 5. agreement with theoretical results which in- 

Table 3. Present criteria compared with experimental results qf [ 171 

/ 

__~~ 
Hooper, Eidlitz and Faucher [ 171 Present criteria Conclusions using bubble 

growth measurements [17]11 

31-8 240.8 13.3 1.5 16 
31-2 203.7 13.2 0.6 9 

31-6 184.0 16.1 0.7 4 
3@17 1814 9.5 0.6 7 

30-18 160.2 8.2 0.5 3 

29-15 158.6 3.8 0.3 11 

0.9 1 
0.2 9 

3 
3 31-22 119.3 2.0 -0 11 

33-5 117.0 9.2 0.35 2 
32-l 101.6 4.1 -0 2 

? Notation of [ 171. 

1 Estimated from measured pressure curves given in [ 171 
$ Maximum valid or available bubble observation time 
/( Based on graphical presentations given in [17]. 

Two of these cases, Films 31-3 and 31-22, are eluded both liquid inertia and heat transfer 
exceptions to the general conclusion for the low effects [his equations (4) and (5)]. The present 
range, as was noted in [17]. Significantly, the criteria applied to his conditions show that the 
present criteria also shows these two bubbles to time at which heat transfer effects become con- 
be approaching asymptotic growth during the trolling ranges from about 0.1 ms for his Run 45 
interval of observation. Note that this is mainly up to about 1 ms for his Run 58 (Bubble 2). Since 
a result of the relatively low superheats for these the data for each of his runs covers a time interval 
cases. It is to be emphasized that the conclusions from about 0.1 ms to 10 ms, most of it falls in the 
reached by Hooper et al. are based on a detailed heat transfer region. Except for his Run 75, 
examination of experimental results, while the Kosky did not show a comparison to the asymp- 
present criteria are purely theoretical results. totic solution of Plesset and Zwick [Kosky’s 
Their excellent extensive experimental results equation (5) with T(R, t) = Ts]. However, such 
generally verify the validity of the present criteria. a comparison, made by the present authors, 

r,u, tin 
(ms) 

Reduced 
acceleration 

L240 10.1. t > 0 
70 <O,l, t > 0 

17 <c 1.2 
32 

8.6 < 1.7 

13 1070 

l-2 <22 
1.7 13.6 

<0,3 5.2 

O-23 46 
10.3 50 

?O.l,f > 0 Very close 
<O 3, >O 1. t < 1.2 Coincide 
<o 1, t > 1.2 
>0,3, r < 0 3 Close- drawing 
10.3, t > 0.3 together 
>0.3, t < 0.9 Very close 
<0,3. t > 0.9 

po3,t > 0 
$0.3, t < 1.6 
<0,3,t > 1.6 
9 0.3, t < 2 4 
t0.3. t > 2.4 
90.3, t > 0 
90.3, t > 0 

Implicit vs. 
explicit 

correlations 

Coincide 
Coincide 

Way apart 
Apart& -drawing 
together 
Apart& coincide 
at 3.3 ms 
Way apart 
Way apart 
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shows that, except possibly for Run 58 (Bubble 
2), the Plesset-Zwick theory matches the data 
as well as the theory curves computed by Kosky. 
In fact, if the Plesset-Zwick theory curves are 
plotted on Kosky’s Figs. 9 and 10, they draw to 
within at least 10 per cent of Kosky’s theoretical 
curves by the times predicted by the present 
criteria for heat transfer controlled growth. 
Althou~ Kosky’s data is valuable, bubble 
diameters at least as small as 001 cm would have 
to be measured to begin to clearly show liquid 
inertia effects for the conditions of his tests. 
This is an order of magnitude smaller than the 
smallest bubble sizes he apparently was able to 
measure with his ex~rimental arrangement. 

As an example of a case in which water vapor 
bubbles grew under conditions where liquid 
inertia effects dominated, the early work of 
Plesset [3] is cited. He numerically solved the 
modified Rayleigh equation incorporating only 
liquid inertia and surface tension effects and 
satisfactorily matched the radius-time data of 
Knapp and Hollander [19] for both the growth 
and collapse phases of cavitation bubbles on a 
streamlined body in a water tunnel, The growth 
times for these bubbles were less than 2 ms and 
for the pressure levels and Ap’s involved result 
in values of t/t,, less than 0.25. Thus, the present 
criteria (Table 1) indicate that the entire growth 
should be in the liquid inertia region, which is 
consistent with Plesset’s results. 

For a given pressure level and equivalent 
superheat (or pressure difference), the relative 
importance of the two controlling mechanisms 
can depend quite strongly on the fluid medium 
involved. This is evident from Table 4. where the 
characteristic lengths and times are tabulated 

Table 4. Characteristic lengths and times for three fluids at 
atmospheric pressure and for AT = 10°C 

__~-_-~._-- - 

Fluid R, tcm) t, Is) 

Water 22 x 10-s 3.4 x 10-e 
Nitrogen 1.8 x 1o-4 1.1 x lo-’ 
Potassium 3.8 x 1O-2 9.0 x 1o-5 
-. ~ __~~~._. .-- ~___ 

for three different fluids, all at the same pressure 
level and for the same superheat. It is clear that 
differences of several orders of magnitude exist. 
These values, in conjunction with Table 1, 
show that fur the giuen conditions, liquid inertia 
effects are essentially negligible for the water, 
certainly so for the nitrogen, but may be signifi- 
cant for the potassium. 

An independent theoretical check on the 
present criteria can be obtained by comparing 
its predictions to theoretical curves presented by 
Bornhorst and Hatsopoulos [7] for nitrogen, 
water and potassium--their Figs. 3, 4 and 5 
respectively. They plot k/l& vs. R/R, for the 
asymptotic solution and for the solution based 
on the coupled equations including heat transfer, 
liquid inertia, surface tension, and interfacial 
nonequilibrium effects. Of interest here are their 
asymptotic solution curves as compared to their 
solution curves for the coupled equations but 
neglecting non-equilibria effects (/I = 0). Not- 
ing that their M and our R,/R, are related by 
R,jR, = 2/JM and using RJR, > 10 for heat 
transfer controlled collapse from Table 1, leads 
to R/R, = 51 for nitrogen, their Fig. 3, 159 for 
water, their Fig. 4, and 5OGO for potassium, their 
Fig. 5. These values are in excellent agreement 
with the points on the Bornhorst and 
Hatsopoulos curves where their coupled solu- 
tion (/? = 0) begins to coincide with their 
asymptotic solution (p = 9 M = 0). 

Experimental veri~cation that bubble growth 
in organic fluids for small, uniform superheats 
and atmospheric pressure levels is controlled by 
heat transfer has been reported by Dergara- 
bedian [20] and by Florschuetz, Henry and 
Khan [IS]. Similar verification for liquid nitro- 
gen was reported by Hewitt and Parker [21] 
(see their Figs. 3-6). 

Hewitt and Parker also obtained bubble 
diameter vs. time data (their Figs. 9-11) for 
liquid nitrogen subject to slow transient pressure 
release to one atmosphere. They compared the 
data to a numerical solution of equation (1) 
assuming pV was constant and using the measured 
pressure variation for pao, and to the Plesset- 
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Zwick asymptotic solution. The data fell 
between these two solutions so a computer 
program for simultaneous solution of equations 
(1) and (3) was written, but results were not 
obtained because computer time requirements 
were too large. Subsequently, Theofonous et al. 
[8] obtained good agreement with the Hewitt 
and Parker data by obtaining numerical solu- 
tions for a theoretical model which included 
both heat transfer and liquid inertia effects, and 
also used the measured system pressure varia- 
tion The present criteria applied to liquid 
nitrogen at one atmosphere and AT= 10°C 
show that the time required to attain heat 
transfer controlled growth is of the order of 
10e6 s. Hewitt and Parker’s data were for AT’s 
less than 10°C. It is, therefore, quite clear that a 
model based solely on heat transfer effects 
could be applied using the measured system 
pressure variation as essentially equivalent to 
the bubble interface pressure in order to f= the 
interface saturation temperature variation. Or, 
use of a reasonable value for t,, which was about 
0.1 s, results in tr/t, - 106. Comparison with 
Table 2 results in the same conclusion. Thus, 
retention of only heat transfer effects in the 
model of Theofonous et al. would give a theoreti- 
cal curve identical to that of their Fig. 10, and 
also in satisfactory agreement with the data. 
Such a numerical solution would be consider- 
ably less involved than one for the coupled 
liquid inertia and heat-transfer equations. In- 
deed, if the system pressure variation can be 
approximated as linear, the analytical solution 
represented by equation (14) would be reason- 
ably satisfactory. 

In passing, it is also noted that the present 
criteria predict well the point at which &riven’s 
[22] asymptotic solution begins to coincide 
with the coupled solution (labeled equilibrium 
solution) as presented by Theofonous et al., for 
one special case involving sodium (their Fig. 2) 
and one involving water (their Fig. 3). 

Application to nonunijiorm superheat cases 
Although the criteria developed here are 

based on a spherically symmetric model, it is of 
interest to make application to several cases of 
vapor bubbles growing from solid surfaces in 
nonuniformly superheated liquids such as occur 
during nucleate boiling processes, 

Cole and Shulman [l l] reported extensive 
diameter versus time data for bubbles growing 
from a horizontal ribbon in saturated nucleate 
pool boiling, with six different liquids at various 
pressure levels and wall superheats. They com- 
pared all of their data with the Forster-Zuber 
equation for spherically symmetric heat diffu- 
sion controlled growth [l], but with the super- 
heat replaced by (T, - TJj2 to take some 
account of the fact that the liquid superheat 
actually drops from (T, - T,) at the wall to 
zero at some point away from the wall. Applica- 
tion of the present criteria to each of their tests 
showed (with the single exception of one toluene 
bubble) that whenever t,, was of the same order 
or larger than the bubble observation time the 
data points fell significantly below the Forster- 
Zuber equation. But when t,, was small com- 
pared to the observation time the agreement was 
fairly reasonable. This tends to verify the specu- 
lation given in [l l] that liquid inertia effects 
were significant for some of their tests at sub- 
atmospheric pressures. 

A very recent work by Sernas and Hooper [23] 
had as a major objective the determination of 
tHT based on experimental results. A result was 
reported for water vapor bubbles growing at a 
heated wall during saturated nucleate boiling 
at a pressure level of one atmosphere for 
T, - T, = 23°F (12.8”C). The estimated initial 
growth period from nucleation to the time at 
which growth begins to follow the law R = 
(constant) t* was determined to be in the range 
43-60 ps, with 50 p as the most probable value. 
The zero time datum was established by the use 
of streak photography in combination with 
framing photography. If, to account somewhat 
for the nonuniform superheat adjacent to the 
heating surface, one uses an average value 
(T, - T,)/2 for the value of A?; Fig 7 gives 
t,, about 70 ps. The agreement with the experi- 
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mental value reported by [23] is excellent, 
particularly when one considers the relationship 
between the model on which the prediction is 
based and the actual experimental conditions. 

CONCLUDING REMARKS 

The authors believe that the particular dimen- 
sionless variables used here are the most 
appropriate that have been suggested to date for 
determination of the relative importance of 
liquid inertia and heat transfer effects. Further- 
more, particular discriminating values of these 
dimensionless variables have been suggested as 
summarized in Tables 1 and 2. That these 
criteria lead to reasonable predictions is sup- 
ported by the comparisons with previous 
experimental and theoretical work as outlined in 
the discussion presented in the preceding section. 
Estimates based on the criteria should be useful 
to investigators in designing experiments invol- 
ving vapor bubble growth phenomena and in 
selecting or developing appropriate theoretical 
models for comparison with the data. If resulting 
estimates are used with proper caution, the 
criteria can also be applied to bubble growth 
phenomena associated with boiling heat transfer 
and flashing or cavitation processes occurring in 
practice under various particular conditions. 
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CRITERES QUANTITATIFS GENERAUX POUR PREDIRE LE MECANISME 
CONTROLANT LA CROISSANCE DE BULLES DE VAPEUR DANS DES LIQUIDES 

SU RCHAUFFES 

R&urn&On prtsente des criteres afin de predire I’importance relative de l’inertie du liquide et le transfert 
thermique dans le liquide, comme controlant la croissance d’une bulle de vapeur a symttrie spherique 
dans des liquides. Le systeme d’tquations renfermant les deux effets ci-dessus est present& sous une forme 
adimensionelle approprite. Les solutions numeriques du systtme d’tquations sont comparees aux solutions 
limites du processus de croissance contrble uniquement par inertie du liquide et uniquement par le transfert 
thermique afm de determiner lcs regions d’importance respective de ces deux mtcanismes. On considtre 
les cas de croissance initiee par une dtcroissance echelon et une decroissance lintaire de la pression du 
systeme. Les criteres sont dtveloppts dans le cas d’un fluide idealise ayant une densitt de vapeur constante, 
et une courbe de pression de vapeur lineaire et on montre ensuite qu’ils sont approximativement 
independants des lois de densitt de vapeur et de pression de ce fluide particulier. L’applicabilite et I’utilite 
de ces crittres sont ttablies et illustrtes par comparaison des predictions bastes sur eux aux etudes 

theoriques et aux resultats exptrimentaux pris dans la litttrature. 

Zusammenfassung,,-Fiir Voraussagen iiber die relative Bedeutung der Massentrlgheit und des 
Wlrmeiiberganges in der Fltissigkeit als regelnde Einfliisse auf das kugelsymmetrische Blasenwachstum 
in Fliissigkeiten werden Kriterien angegeben. Die gekoppelten regulierenden Gleichungen sind unter 
Berticksichtigung der oben angeftihrten Effekte zuerst in passende dimensionslose Formen gebracht 
worden. Die numerischen Liisungen der gekoppelten Gleichungen werden dann mit den einschrinkenden 
Liisungen fiir nur trkgheitskraftgeregelte und nur wlrmeiibergangsgeregelte Wachstumsprozesse ver- 
glichen, urn die betreffenden Bereiche nach der Wichtigkeit dieser beiden Mechanismen zu beurteilen. 
Beide FLlle des Blasenwachstums, ob sie durch stufenfiirmige, oder lineare Druckabnahme im System 
eingeleitet wurden, sind berticksichtigt worden. Die Kriterien werden fiir den Fall einer idealen Fltissigkeit 
mit konstanter Dampfdichte und einer linearen Dampfdruckkurve entwickelt. Es zeigt sich dabei, dass die 
Kriterien annlhernd unabhtingig von der Dampfdichte und den Druckbeziehungen der einzelnen 
Fliissigkeiten sind. Die Anwendbarkeit und Niitzlichkeit der Kriterien werden unterstiitzt und veran- 
schaulicht durch den Vergleich der auf diesen Kriterien beruhenden Voraussagen mit friiheren theoreti- 

schen und experimentellen Ergebnissen aus der Literatur. 
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